skip to main content


Search for: All records

Creators/Authors contains: "Martin, D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Despite increasing risks from sea-level rise (SLR) and storms, US coastal communities continue to attract relatively high-income residents, and coastal property values continue to rise. To understand this seeming paradox and explore policy responses, we develop the Coastal Home Ownership Model (C-HOM) and analyze the long-term evolution of coastal real estate markets. C-HOM incorporates changing physical attributes of the coast, economic values of these attributes, and dynamic risks associated with storms and flooding. Resident owners, renters, and non-resident investors jointly determine coastal property values and the policy choices that influence the physical evolution of the coast. In the coupled system, we find that subsidies for coastal management, such as beach nourishment, tax advantages for high-income property owners, and stable or increasing property values outside the coastal zone all dampen the effects of SLR on coastal property values. The effects, however, are temporary and only delay precipitous declines as total inundation approaches. By removing subsidies, prices would more accurately reflect risks from SLR but also trigger more coastal gentrification, as relatively high-income owners enter the market and self-finance nourishment. Our results suggest a policy tradeoff between slowing demographic transitions in coastal communities and allowing property markets to adjust smoothly to risks from climate change.

     
    more » « less
  2. Abstract

    Optogenetics has transformed studies of neural circuit function, but remains challenging to apply to non-human primates (NHPs). A major challenge is delivering intense, spatiotemporally-precise, patterned photostimulation across large volumes in deep tissue. Such stimulation is critical, for example, to modulate selectively deep-layer corticocortical feedback circuits. To address this need, we have developed the Utah Optrode Array (UOA), a 10×10 glass needle waveguide array fabricated atop a novel opaque optical interposer, and bonded to an electrically addressable µLED array. In vivo experiments with the UOA demonstrated large-scale, spatiotemporally precise, activation of deep circuits in NHP cortex. Specifically, the UOA permitted both focal (confined to single layers/columns), and widespread (multiple layers/columns) optogenetic activation of deep layer neurons, as assessed with multi-channel laminar electrode arrays, simply by varying the number of activated µLEDs and/or the irradiance. Thus, the UOA represents a powerful optoelectronic device for targeted manipulation of deep-layer circuits in NHP models.

     
    more » « less
  3. Scientists seek to understand the causal processes that generate sustainability problems and determine effective solutions. Yet, causal inquiry in nature–society systems is hampered by conceptual and methodological challenges that arise from nature–society interdependencies and the complex dynamics they create. Here, we demonstrate how sustainability scientists can address these challenges and make more robust causal claims through better integration between empirical analyses and process- or agent-based modeling. To illustrate how these different epistemological traditions can be integrated, we present four studies of air pollution regulation, natural resource management, and the spread of COVID-19. The studies show how integration can improve empirical estimates of causal effects, inform future research designs and data collection, enhance understanding of the complex dynamics that underlie observed temporal patterns, and elucidate causal mechanisms and the contexts in which they operate. These advances in causal understanding can help sustainability scientists develop better theories of phenomena where social and ecological processes are dynamically intertwined and prior causal knowledge and data are limited. The improved causal understanding also enhances governance by helping scientists and practitioners choose among potential interventions, decide when and how the timing of an intervention matters, and anticipate unexpected outcomes. Methodological integration, however, requires skills and efforts of all involved to learn how members of the respective other tradition think and analyze nature–society systems.

     
    more » « less
    Free, publicly-accessible full text available October 10, 2024
  4. Free, publicly-accessible full text available November 1, 2024
  5. How barriers to gene flow arise and are maintained are key questions in evolutionary biology. Speciation research has mainly focussed on barriers that occur either before mating or after zygote formation. In comparison, postmating prezygotic (PMPZ) isolation – a barrier that acts after gamete release but before zygote formation – is less frequently investigated but may hold a unique role in generating biodiversity. Here we discuss the distinctive features of PMPZ isolation, including the primary drivers and molecular mechanisms underpinning PMPZ isolation. We then present the first comprehensive survey of PMPZ isolation research, revealing that it is a widespread form of prezygotic isolation across eukaryotes. The survey also exposes obstacles in studying PMPZ isolation, in part attributable to the challenges involved in directly measuring PMPZ isolation and uncovering its causal mechanisms. Finally, we identify outstanding knowledge gaps and provide recommendations for improving future research on PMPZ isolation. This will allow us to better understand the nature of this often-neglected reproductive barrier and its contribution to speciation. 
    more » « less
    Free, publicly-accessible full text available December 27, 2024
  6. Abstract

    We develop a linear perturbative formalism to compute the response of an inhomogeneous stellar disk embedded in a nonresponsive dark matter (DM) halo to various perturbations like bars, spiral arms, and encounters with satellite galaxies. Without self-gravity to reinforce it, the response of a Fourier mode phase mixes away due to an intrinsic spread in the vertical (Ωz), radial (Ωr), and azimuthal (Ωϕ) frequencies, triggering local phase-space spirals. The detailed galactic potential dictates the shape of phase spirals: phase mixing occurs more slowly and thus phase spirals are more loosely wound in the outer disk and in the presence of an ambient DM halo. Collisional diffusion due to scattering of stars by structures like giant molecular clouds causes superexponential damping of the phase spiral amplitude. Thezvzphase spiral is one-armed (two-armed) for vertically antisymmetric (symmetric) bending (breathing) modes. Only transient perturbations with timescales (τP) comparable to the vertical oscillation period (τz∼ 1/Ωz) can trigger vertical phase spirals. Each (n,l,m) mode of the response to impulsive (τP<τ= 1/(nΩz+lΩr+mΩϕ)) perturbations is power-law (∼τP/τ) suppressed, but that to adiabatic (τP>τ) perturbations is exponentially weak (expτP/τα) except for resonant (τ→ ∞ ) modes. Slower (τP>τz) perturbations, e.g., distant encounters with satellite galaxies, induce stronger bending modes. Sagittarius (Sgr) dominates the solar neighborhood response of the Milky Way (MW) disk to satellite encounters. Thus, if the Gaia phase spiral was triggered by a MW satellite, Sgr is the leading contender. However, the survival of the phase spiral against collisional damping necessitates an impact ∼0.6–0.7 Gyr ago.

     
    more » « less
  7. Free, publicly-accessible full text available July 1, 2024
  8. ABSTRACT

    Many disc galaxies host galactic bars, which exert time-dependent, non-axisymmetric forces that can alter the orbits of stars. There should be both angle and radius dependences in the resulting radial rearrangement of stars (‘radial mixing’) due to a bar; we present here novel results and trends through analysis of the joint impact of these factors. We use an N-body simulation to investigate the changes in the radial locations of star particles in a disc after a bar forms by quantifying the change in orbital radii in a series of annuli at different times post bar formation. We find that the bar induces both azimuth angle- and radius-dependent trends in the median distance that stars have travelled to enter a given annulus. Angle-dependent trends are present at all radii we consider, and the radius-dependent trends roughly divide the disc into three ‘zones’. In the inner zone, stars generally originated at larger radii and their orbits evolved inwards. Stars in the outer zone likely originated at smaller radii and their orbits evolved outwards. In the intermediate zone, there is no net inwards or outwards evolution of orbits. We adopt a simple toy model of a radius-dependent initial metallicity gradient and discuss recent observational evidence for angle-dependent stellar metallicity variations in the Milky Way in the context of this model. We briefly comment on the possibility of using observed angle-dependent metallicity trends to learn about the initial metallicity gradient(s) and the radial rearrangement that occurred in the disc.

     
    more » « less
  9. The article argues that mainstream value-sensitive approaches to design have been based on narrow understandings of personhood and social dynamics, which are biased toward Western Educated Industrialized Rich and Democratic cultures and contradicted by empirical evidence. To respond to this weakness, the article suggests that design may benefit from focusing on user behaviours from the joint perspective of values and norms, especially across cultural contexts. As such, it proposes Norm Sensitive Design as a complement to value-sensitive approaches when designing and implementing new technologies. Versus values, norms serve as more accurate predictors or descriptors of behaviours and can thus support valuesensitive approaches to realize the aspiration of informing user behaviour via design. The article makes two key contributions. On the theoretical side, it promotes the consideration of norms in design. On the practical side, it offers designers and instructors prompts for reflecting on design ethics from the perspective of norms. 
    more » « less
  10. Abstract The control of tetrahedral carbon stereocentres remains a focus of modern synthetic chemistry and is enabled by their configurational stability. By contrast, trisubstituted nitrogen 1 , phosphorus 2 and sulfur compounds 3 undergo pyramidal inversion, a fundamental and well-recognized stereochemical phenomenon that is widely exploited 4 . However, the stereochemistry of oxonium ions—compounds bearing three substituents on a positively charged oxygen atom—is poorly developed and there are few applications of oxonium ions in synthesis beyond their existence as reactive intermediates 5,6 . There are no examples of configurationally stable oxonium ions in which the oxygen atom is the sole stereogenic centre, probably owing to the low barrier to oxygen pyramidal inversion 7 and the perception that all oxonium ions are highly reactive. Here we describe the design, synthesis and characterization of a helically chiral triaryloxonium ion in which inversion of the oxygen lone pair is prevented through geometric restriction to enable it to function as a determinant of configuration. A combined synthesis and quantum calculation approach delineates design principles that enable configurationally stable and room-temperature isolable salts to be generated. We show that the barrier to inversion is greater than 110 kJ mol −1 and outline processes for resolution. This constitutes, to our knowledge, the only example of a chiral non-racemic and configurationally stable molecule in which the oxygen atom is the sole stereogenic centre. 
    more » « less